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Abstract

An elastic system loaded with the following forces is in an equilibrium state. Stability of this state in the small is
investigated under the assumption that if this state is disturbed and the system is set into motion, there appear some
small forces of a type unknown in advance. Stability of non-conservative elastic systems is usually analysed on the basis
of dynamic approach only, that is, by means of composing equations of disturbed motion and investigating these
equations. Such an approach does not conform to the considered system as the unknown type of small forces does not
permit the formulation of equations of motion. For this reason, the problem of stability analysis is defined in the article
in a new fashion. A quasi-static approach based on energy considerations is worked out. The approach results in the
same buckling criterion as is used by the static energy method. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The elastic system loaded with the dead and following forces £, which do not explicitly depend on time
and velocities, is in an equilibrium state. If buckling occurs, the system under consideration changes to a
new equilibrium state or begins to oscillate with increasing amplitudes. The possibility of these two different
buckling types allows, as is generally accepted, only the dynamic approach to the stability analysis (Bolotin,
1961; Volmir, 1967), which is the method of small vibrations or the dynamic energy method (Leipholz,
1977) are to be used. Both methods can be implemented if in the process of the disturbed motion, small
forces do not arise or the type of these forces is known in advance.

The approach of this paper determines the load level at which the system can be deformed without any
external energy input. This approach does not require information on the forces arising in the process of
movement and can be used for the system under consideration. The new system stability characteristic is the
result of the new approach. If the information mentioned above is available, this characteristic can be
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interpreted as the lower limit for critical loads of the group of systems differing in mass distribution and in
small external resistance forces.

Further, the following notation is used. Generalized coordinates g; specify the initial state 0 of a system.
Coordinates ¢; + dg; specify the new state s. AU is the arbitrary increment of magnitude U, probably,
depending on the path of transition, 0 — s. U, 8*U specify the first and second order upon dg; terms of
increment AU. Sign d specially points out that U does not depend on the path of transition.

2. Quasi-static approach

Let 0 be the analysed equilibrium state specified by generalized coordinates g;, S be a set of adjacent
kinematically permitted states s, specified by coordinates ¢; + dg;. Generally speaking, states s are unbal-
anced.

Transition 0 — s to a certain state s € S is considered. Let AU be the increment of the elastic energy U,
AA be the work done by the external forces f. It is possible to realize arbitrary transition 0 — s as quasi-
equilibrium by means of an additional force r, which is determined by the trajectory. As in the process of
this transition the energy conservation principle is valid, the work of force r is

A, = AU — AA. (1)

If force r can be considered as disturbance, then A4, is the work of this disturbance.

The problem of stability analysis in the small is defined in the following way. The system is considered
unstable if some disturbance deforms this system without energy input. Conditions when this is possible are
determined. Let the result of disturbance be transition 0 — s to adjacent state s and r be the additional force
that corresponds with the quasi-equilibrium transition 0 — s. Force r can also be considered as disturbance;
A, is the work of this force. Stability condition is introduced in the form

A, =AU — A4 >0, (2)

for every adjacent state s and every path 0 — s.
The criterion of buckling is

AU — A4 =0, (3)

for some state s and some path 0 — s. A4 depends on the path 0 — s.

The static energy method used for conservative systems also examines the difference AU — A4 between
the elastic energy increment AU and the work A4, performed by the external forces fin the case of various
transitions 0 — 5. Buckling criterion is also given by Eq. (3). This criterion follows from Lagrange—
Dirichlet’s theorem, which is not valid for systems under consideration. For conservative systems, work A4
is independent of the path of transition.

For non-conservative systems, the sufficiency of analysing only the shortest path 0 — s is introduced as a
postulate. It is the only postulate proposed in the present approach. Along the shortest path coordinates, g;
vary proportionally. Further, this postulate is justified in different ways, but at first, one preliminary
consideration based on the properties of small vibrations of the elastic system is proposed. Differential
equation of small vibrations has the solution

Aqi(q,t) = ¢;(q) exp (42). 4)

Here, ¢ is a set of generalised coordinates and ¢ is the time. In the stable state, 4 is imaginary and ¢;(¢q) are
real. So increments Ag; estimated according to Eq. (4) vary with time in a similar manner and the path
0 — s is the shortest one. (It is necessary to note that after buckling, the proportionality of Ag; vanishes.)
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If the path of transition 0 — s is given, there are two possible cases that require separate discussion. Let
disturbance be applied quasi-statically. Then, force r is the disturbance itself. It is natural to postulate the
conservative character of such a disturbance. Then, the left-hand side of Eq. (1) does not depend upon the
path of transition 0 — s, and there is no necessity to especially postulate the proportionality of dg;.

Let disturbance be applied dynamically. Then, force r also takes into account inertial forces. The pos-
tulation of accelerations constancy along the transition 0 — s into adjacent state s results in the constancy
of the inertial forces. Then, their work does not depend on the path of transition again.

According to the virtual work principle, first order terms of dg; in Eq. (3) collectively are equal to zero,
i.e., Eq. (3) results in the energy criterion of buckling in its ordinary form,

U -84 =0, (5)

for some dg;, compatible with the geometrical boundary conditions.

Another way of constructing criterion (5) is based on the fundamental thermodynamic principle of
maximal work. This principle considers a system which in its forced or spontaneous unbalanced evolution
passes through a sequence of states s and produces work —A4, (work performed upon the system is assumed
to be positive). According to this principle, if the system is taken through this sequence in the quasi-static
manner for any element of process work —A4, produced by the system would be greater than —4,. So for
any spontaneous transition 0 — s,

Aq—4, <0. (6)

If spontaneous transition to any s € S is impossible, the initial state is stable. The condition of stability
assumes the form

Ag—A—4,>0, seS. (7)

Here, work A, of power disturbance r, which acts in the course of the transition, is singled out as a special
term. A4 is the actual work of load f. The formulation of the stability problem in the small predetermines
negligibly the small magnitude of work 4,; so the term 4, can be omitted.

According to the first law of thermodynamics, for the elastic system work A4 is equal to the elastic energy
change AU. Thus, Eq. (7) can be rewritten as

AU-A4>0, s€S. (8)

As the term 4, is omitted, inequality (7) becomes strict. Work A4 is calculated ignoring the work of dis-
turbance, but still depends on the path of transition. (One can point out that Eq. (8) evidently extends to
elastic—plastic systems.)

The principle of maximal work from all possible paths of transition 0 — s singles out the shortest one in
which increments dg; change proportionally to each other. Indeed, let the pair of states 0, s be considered
and the path of transition 0 — s be represented by the sequence of steps 0 -1 -2 — .- —>n—s
(0,1,2,n € S) with the proportional change of dg; along each step. In accordance with the verbal formu-
lation of the principle in spontaneous transition, condition (7) is kept at each step. Consequently, im-
possibility of transition 0 — 1 means impossibility of transition 0 — s. The necessity for analysing steps
1 —2,...,n— s no longer arises. The possibility of 0 — 1 transition means instability of the system, but
this fact will be determined as the pair of states 0, 1 is analysed. Thus, postulating the shortest path of
transition 0 — s may be considered as the consequence of the maximal work principle.

As stability is analysed in the small, only ratios of dg; are important. So further, in Eq. (8), the set S of
adjacent states s is replaced by the set of available directions s.

According to the virtual work principle, the left-hand side of Eq. (8) does not include components of dg;
order. If in Eq. (8) only the components of the second order are kept, left-hand sides of conditions (8) and
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(5) become identical. The difference between Egs. (8) and (5) is the explicit representation in Eq. (8) of set S.
Only after this representation, condition (8) transforms into the stability criterion.

Particular motion equations take into consideration one or another peculiarity of perturbed motion and
restrict thereby set S. This is seen, for instance, from the examples given below. If limitations of set .S are
taken into account, criterion (8), generally, leads to the same result as the dynamic one. If the limitations
are not taken into account, it is natural to interpret the critical load given by Eq. (8) as the lower limit of
critical loads for the group of systems, differing in mass distribution and in small resistance forces, arising in
the process of movement. Another interpretation of the result is the critical load for a system whose mass is
such that the inertial forces, arising in the process of movement, are small compared with disturbing forces.

Publications devoted to non-conservative problems of elastic stability discuss effects caused by small
viscosity of material (internal friction). Condition (8) considers a material as ideally elastic and requires
modification to take viscosity of a material into account. So, at present, only external friction (arbitrary
small forces arising in the process of movement) is taken into consideration.

2.1. Quasi-static criterion of buckling

If set S coincides with set Sy of all kinematically permitted directions, condition (8) gives the lower limit
for critical loads and assumes the form,

d’U—-84=0 forsome s € S,. 9)

Here, the left-hand side of the equation is the quadratic form of independent variables dg;, and the equation
itself is identical to condition (5).

Because criterion (9) takes into consideration small forces of the type unknown in advance as well as
every kind of inertial forces, critical force, derived on the basis of Eq. (9), does not depend on mass dis-
tribution.

The result of criterion (9) can be considered also as the lower limit of critical loads for the group of
systems, differing in mass distribution.

Criterion (9) gives the value of the critical force only. One is to use the dynamic approach to derive the
form of buckling and the disturbance that causes buckling.

2.2. Criterion for the known disturbed motion type

Let constraint of set S, imposed by kinematic equations be taken into account. Then, criterion (8) as-
sumes the form

d*U -84 =0 forsome s € Sy. (10)

Here Sy C Sy is a subset of directions compatible with admissible motion trajectories. Subset Sy not only
depends on the load level, but it also depends on the mass distribution.

As is shown in this paper with the help of examples, in elementary cases to construct set Sy C Sp, it is
sufficient to know only the form of kinematic equations. In the general case, the calculation of natural
frequencies is required to construct Sy, and criterion (10) itself transforms into a more bulky variant of
dynamic criterion.

Further, the examples demonstrate main features of the new approach. These examples consider a
straight rod of length / with constant rigidity £/ and use dimensionless longitudinal coordinate X = x/1/.

Analysed equilibrium state 0 is given by generalized coordinates ¢; = 0, so increments dg; are equal to
values of ¢; in the perturbed state. In state 0, elastic energy Uy = 0, so its increment AU = U. Therefore,
further, signs d, d in stability criterion are omitted.
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Fig. 1. The rod loaded with tangent force P.

3. Examples

(1) The rod is loaded on its upper end 4 with tangent force P (Fig. 1). Flexure is permitted only on the
figure plane.

Quasi-static critical load: Relative deflection w (divided by the rod’s length /) sets the shape of the de-
flection curve,

w(x) = w(x) = f1(x) + E;b,-ﬁ@). (1)
Here n is the number of degrees of freedom. Functions f;(x) satisfy kinematic boundary conditions

fi(0) = f7(0) = 0. (12)
Power conditions

A1) = £"(1) =0 (13)
are not taken into account as small disturbances applied to the upper end are permitted. Coefficients b;
(i=2,...,n) determine possible directions of transitions. Any values of b; are possible, so set S; members

are various combinations of b;. The quantities are

_EI (!
20

! (@)Pdx = 2, (14)

U
2]

A=§{A®%Ww—wmwm}=%3 (15)

The second term in Eq. (15) takes account of the following component of force P.

Buckling criterion (9) results in
. KEI . u
P :T, K:mlna. (16)

Quantities u,a depend on b;. Designation min denotes minimizing with regard to b,. Coefficient K defines
the value of critical force.
Let, for instance, the deflection be

w(x) = (bsx° + byx* + b3 + 7). (17)

Minimizing results in
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K=9875~m=9.870 (by=0.111; by = —1.123; bs = 0.433). (18)

In the table, some dynamically found values of K are presented for comparison. Solutions of the cor-
responding problems are taken from (Bolotin, 1961; Panovko and Gubanova, 1967). Case 1 — point mass is
at 4. Case 2 — mass is distributed uniformly. Case 3 — the rod has two point masses m; and m,, located at
%1 = 1 and X, = ¢. K depends on m;/m, and c. The lower limit K = ©* is reached if m; /m; < 1 and ¢ < 1.
Case 4 —mass m = 0 is at A, its moment of inertia /,, # 0 (two small masses a long distance away from each
other). Case 5 — point mass is at 4, Voigt’s rheological model is used.

Case Ideally elastic rod Vanishing viscosity
1 2 3 4 5
K 20.19 20.03 >n? 2 10.94

Result (18) actually limits from below dynamically found values of K. There exist mass distributions that
realize value (18).

Critical load for a particular system: Mass m is at point 4. Its moment of inertia I, # 0 is set by pa-
rameter p = +/I,/(MI?). The differential equation of the deflection is (deflection and longitudinal coordi-
nates are dimensionless)

wY +iPw' =0, (19)

K* = PI*JEI. (20)
Kinematic boundary conditions are
Wig = W._, = 0. (21)
Kinematic equations give power boundary conditions:
EW! | = —L,V._,, EW!, =ml_. (22)
The solution of Eq. (19) complying with condition (21) assumes the form
w(x) = C(sinkx — kx) + D(1 — coskx), (23)
where constants C and D are time functions.
Ratio T = D/C defines the shape of the curve w(x). Set S, includes any values of T. Set Sy includes only
values that satisfy power conditions (22).

Instead of buckling criterion (10), it is more convenient to use stability criterion which, considering Egs.
(14), (15) and (23), assumes the form

sinkT? — ksinkT + sink — kcosk > 0. (24)
The extreme value of the left-hand side of Eq. (24), taken according to the values of 7, is
h= (1 —k*/4)sink — kcosk. (25)

h(k) > 0 in the interval k¥ < 3m/2 that is important for the stability analysis. If & < «, sink > 0 and A(k) is
minimum. So, for any 7, criterion (24) is satisfied and buckling is impossible. Buckling is possible for £ > =.
Value k = n (K = n?) determines the lower limit of critical loads as restriction of 7 values owing to power
conditions (22) is not taken into consideration. This value coincides with result (18), but now this value is
associated only with the systems having point masses on their upper ends, because the solution of a uniform
equation (19) is used.
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According to Eq. (10), stable behaviour of the system for k£ > 7 is the result of range restriction of 7'
values, imposed by relations (22). According to Eq. (22), allowed values of T satisfy the equality,

Tcosk — sink 5, Tsink— (1 — cosk)

Tsink + cosk " T(1 — cosk) + sink — k' (26)
Case C = 0 is considered as the limit for 7 — ooc.
When p = 0, set Sy consists of two load-dependent elements:
Sq = {tgk, (k— sink)/(1 — cosk)}. (27)
When p — oo,
Sq ={ —ctgk, (1 — cosk)/sink}. (28)
For both sets (27) and (28), the critical load corresponds with their first elements.
For T = tgk, condition (24) assumes the form
sink — kcosk (29)

cos?k

and results in K = 20.19 (case 1 of the table).
If T = —ctgk, condition (24) assumes the form,

1/sink >0 (30)

and does not hold for k > n. The critical value K = r? also coincides with the dynamically found one (case 4
of the table).
With other values of p, the quadratic in 7'in Eq. (26) should be solved. The determinant of this equation

B(k) = [(kp)2 sink}2 + (kcosk — sink)2 + 2(kp)2[k(2 — cosk)sink — (1 — cosk)(3 — cosk)] (31)

up to the factor k&> coincides with the determinant of the frequency equation (Panovko and Gubanova,
1967). If B < 0, the roots of Eq. (26) and the frequency of vibration are simultaneously complex. The
absence of real roots should correspond to unrestricted set Sp. Thus, together with inequality £ > m, con-
dition

B(k) =0 (32)

determines buckling. Direct check shows that if B(k) > 0, inequality (24) is kept, so stability holds fine.
Hence, disregarding additional limitation k& > m, criterion (10) leads to a more complicated form of the
dynamic buckling criterion.

Influence of small resistance forces: Criterion (9) permits the rise of small forces that are unknown in
advance and are caused by the process of disturbed motion. Generally speaking, the example illustrates the
strong influence of such forces.

The stability of the rod shown in Fig. 2 is examined by means of the method of small vibrations. Force
q = aw,—;, o« > 0 of external viscous resistance is applied to the upper end of the rod. Mass m is focused at
point 4. Mass and viscosity are specified by parameters m = m/*/EI and & = o/*/EI.

Solutions of the differential equation (19) are considered:

w(t,3) = w1 () exp (J1). (33)

Here 4 is the complex constant and ¢ is the time.
Deflection w;(x), which satisfies geometrical boundary conditions and conjugation conditions at X =

a(Woy = Woye, W,_, =W, ., W' . =w/! ), has the form

e Vate Va— ate

wi(x) = A(1 — coskx) + B(sinkx — kx) + D[sin (kX — ka) — (kx — ka)].,. (34)
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Fig. 2. Influence of small resistance force.

The boundary conditions determine complex constants 4, B and C.
Shearing force Q satisfies the boundary condition

(Q))?:aJrc - (Q)Sc:afz = m(v'{}l)x:a = _EI[(WW/IZ)}:aH - (Wm/lz)x:afc] (35)
that is the constant
2

mi. .
D:?[A(l — coska) + B(sinka — ka)]. (36)
The boundary conditions (w"),_, = 0, EI(W"/I?)._, = a(wl)._, lead to
Acosk — Bsink — Dsinkb = 0, (37)
k(A sink + Bcosk + Dcoskb) = —ai(A — Bk — Dkb). (38)

The right-hand side of Eq. (38) takes into account relation (37).
If D is eliminated from Egs. (37) and (38), the frequency determinant becomes

cosk — sin (kb)hymd? —sink — sin (kb)hyi2?
sink + (coskb — kbaJ)himi’ + ). cosk + (coskb — kbGl)hymi> — kéj.

= 0. (39)

Here hy = 1 — coska, hy = sinka — ka, m = m/k> and & = a/k*. Condition (39) results in the following cubic
equation (coefficients at 4%, A° are equal to zero)

des 1+ mey )2 + Gerd+1=0. (40)
The coefficients are

cr=glk), ¢ =glka), c¢3=h(ksinkb— kbsink) + hy(sin(kb) — kbcosk), (41)

g(k) = sin(k) — kcos(k). (42)

The system in Fig. 2 is stable if all roots of Eq. (40) have negative real parts, which are such at
c1>0, >0, ¢3>0, cic;—c3>0. (43)

According to Eq. (43), the stability of the state does not depend on absolute values of m and o. Only their
presence is important.
If & = 0 (viscous resistance is absent), then ¢; = ¢3 = 0 and the stability condition assumes the form

¢ > 0. (44)

Critical value of force parameter & in such an ideal situation is
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Fig. 3. k—a plot for the system on Fig. 2.

kia = \/B/a. (45)
Here /B = 4.493 is the root of equation g(k) = 0.

If o« # 0, the critical value of k is given by the last inequality in Eq. (43). Results are shown in Fig. 3,
where digits 1, 2 mark curves for considered and ideal situations. According to this figure, the existence of
external viscous forces radically changes results of stability analysis. The straight line k = /B shows the
case for a massless rod (m = 0). Energy value of the critical load (straight line k& = ) restricts the dy-
namically found results from below.

It is possible to consider external small viscous forces as disturbances. In accordance with the example, it
is necessary to take such disturbances into consideration. For this reason, it is necessary to extend the class
of disturbances, used for stability analysis, by means of including in this class every possible small force,
depending on system displacements (Kagan-Rosenzweig, 1999b).

The unknown type of disturbing forces does not allow one to compose equations of disturbed motion
and to use the dynamic approach. The quasi-static approach is to be used for this purpose. But only the
dynamic approach supplemented by the assumption on a physical nature of disturbing forces allows one to
obtain the disturbance that causes loss of stability.

(2) Force P on the upper end of the rod falls behind the tangent (Fig. 4). Again, the flexure is permitted
only on the figure plane.

Quasi-static critical load: The load is defined by relation (16) in which now

a= [ B@PdE— (1= w(w(1). (46)

f

Fig. 4. Force P falls behind the tangent.
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Fig. 5. K-¢ plot for the system in Fig. 4.

The result of minimizing is plotted in Fig. 5, curve 1. Curves 2 and 3 show, respectively, the results for the
rod with point mass on its upper end (Dzanelidze problem) and with mass m = 0; I,, # 0, obtained dy-
namically.  denotes 20.19.

In the whole range of &, curves 2 and 3 differ from curve 1. Such an effect is unexpected. Actually, if
£<0.5, Euler static method and the method of small vibrations give identical results. In this range of ¢,
curves 2 and 3 correspond to the static buckling mode, and it is natural to expect that criterion (9) will give
the same result. The problem was considered in Kagan-Rosenzweig, 1999a) where the method of small
vibrations was used and mass distribution, which responds critical curve 1, was obtained. This mass dis-
tribution conforms to a massless rod with a vertical rigid cantilever attached to its upper end and with point
mass located at a relevant position on this cantilever. Thus, curve 1 does not contradict the above-
mentioned interpretation of criterion (9). It is necessary to note that, according to the obtained result,
stability in the Euler sense does not guarantee stability in the dynamic sense.

Critical load: For the rod, in Fig. 4, with mass m on its upper end, the moment of inertia 7,, # 0. The
deflection curve satisfying the differential equation of flexure has the form (23). Power boundary conditions
are

EW._ /1= ~L,._,,  EW! /P =miiey — k(1 —Ew_, /1. (47)
According to Egs. (23) and (47), assumed values of 7 satisfy the equation

Tcosk — sink Tsink — (1 — cosk)

Tésink + Ecosk+1—¢& =k T(1 — cosk) + sink — k~ (48)
When p = 0, the set

Sq = {tgk, (k— sink)/(1 — cosk)}. (49)
The stability criterion is given by

T(T — k)sink + sink — kcosk + (1 — &){(sink — k)(1 — cosk) — T[(Tsink + 2cosk)(1 — cosk)

— ksink]} > 0. (50)

Substitution of 7 = tgk into Eq. (50) leads to the relation

%[1—(1—5)(1—“)%)] > 0. (51)

This implies the equation for critical value of force parameter k:
cosk =—¢/(1—¢&), ¢<0.5, (52)

sink —kcosk =0, ¢&>0.5.

Result (52) is identical to the dynamically found result. The plot of K(¢) is shown in Fig. 5, curve 2. Curve 3
shows the result for the rod with mass m =0, 1,, # 0 at A4.
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Fig. 6. The rod twisted by the tangent moment.

(3) The rod with point mass m on its upper end is twisted by the following tangential moment L. The
compressive force P = 0 (Fig. 6). Quantities £/, = EI. = El, El, represent flexural and torsional rigidities.
The critical value of L is evaluated.

The rod has two degrees of freedom, and its deformation caused by perturbation can be specified either
by means of small horizontal displacements u;, v; of point A or by means of small horizontal forces P, P,
applied to A. Values of P, /P, define set Sy of directions. As kinematic equations are not used, the limit value
of the critical load for systems with point masses on their upper ends is calculated.

Let w(¥) = u + iv be the complex deflection and y = L//EI be the load parameter. The complex form of
the differential equation for the deflection curve is (Bolotin, 1961)

W' —iw' =—p, p=p +ip,= (P +iP,)I’/EIL (53)
Its solution, complying with the boundary conditions w(0) = w'(0) = w"'(1) =0,
w(x) = (p/7")[e"") +0.57°%% — (1 — iyx)] (54)

contains two constants p; and p,. Any value of p;/p, is considered possible.
The torque in the section X is

L.(x) = Lcos(0(x) —0(1)) = L[1 —0.5(6(x) — 9(1))2], 0=vu’+v°)l. (55)
The twist change is
. _é_ll/o [0(%) —29(1)] . (56)

The work produced by the torque while deviating from the stable state,
A=Ly+Lud (1) (1)/, (57)

takes into account the twist change (first term) and the inclination of the plane of torque L (second term).
Elastic energy change consists of the flexural and torsional terms:

U=U+U,, (58)

EI : M2 3= : M2 3=
U, =Ly, U, === ")dx+ [ (v")dx|. (59)
The buckling criterion (10) gives

0.5 [ /0 )+ /0 1 (u”)zdx} - % ~0 (60)
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and results in

(1= siny/y)[cosypt + (2 + cosy/y)p3] — (v — 2siny/y)pipr = 0 (61)

for some p; and p».
Hence, the critical value of the load parameter y is the root of the equation

(1 — siny/y)’cosy(2 4 cosy) — (siny —y/2)> = 0. (62)

This root y = 0, i.e., instability is possible with any L.
As is known (Bolotin, 1961), the dynamic solution of the problem leads to the same result.

4. Conclusion

The article deals with stability analysis in the small of elastic non-conservative systems and contains a
new definition for the problem of stability analysis: the system is considered stable if it requires an external
energy input to deform it. Such a definition of the problem serves as the basis for the quasi-static approach.
The approach leads to the same buckling criterion as is used by the static energy method.

The critical load value P* found with the help of quasi-static approach takes into account small forces of
non-inertial nature, which may arise in the process of movement. For this reason, P* does not depend on
mass distribution.

The load P* can be treated also as

(a) the critical load for the system, which if disturbed undergoes small forces unknown in advance;

(b) the lower limit of dynamically found critical forces affecting the systems with different mass distri-
butions.

Interpretation (b) is the result of the method used to base the stability criterion. It should be noted that
there exists a system, found by the author (Kagan-Rosenzweig, 1998), the critical load of which, obtained
by the method of small vibrations, is less than the quasi-static value P*. This result is yet to be analysed.

The new approach gives only the value of the critical load. One is to use the dynamic approach, sup-
plemented by the assumption on the nature of the above-mentioned small forces to derive the buckling
mode and a certain disturbance that causes buckling.
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